dc.contributor.author
Caro, Matthias C.
dc.contributor.author
Gil-Fuster, Elies
dc.contributor.author
Meyer, Johannes
dc.contributor.author
Eisert, Jens
dc.contributor.author
Sweke, Ryan
dc.date.accessioned
2022-02-18T09:32:23Z
dc.date.available
2022-02-18T09:32:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34035
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33753
dc.description.abstract
A large body of recent work has begun to explore the potential of parametrized quantum circuits (PQCs) as machine learning models, within the framework of hybrid quantum-classical optimization. In particular, theoretical guarantees on the out-of-sample performance of such models, in terms of generalization bounds, have emerged. However, none of these generalization bounds depend explicitly on how the classical input data is encoded into the PQC. We derive generalization bounds for PQC-based models that depend explicitly on the strategy used for data-encoding. These imply bounds on the performance of trained PQC-based models on unseen data. Moreover, our results facilitate the selection of optimal data-encoding strategies via structural risk minimization, a mathematically rigorous framework for model selection. We obtain our generalization bounds by bounding the complexity of PQC-based models as measured by the Rademacher complexity and the metric entropy, two complexity measures from statistical learning theory. To achieve this, we rely on a representation of PQC-based models via trigonometric functions. Our generalization bounds emphasize the importance of well-considered data-encoding strategies for PQC-based models.
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
parametrized quantum circuits
en
dc.subject
machine learning
en
dc.subject
hybrid quantum-classical optimization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Encoding-dependent generalization bounds for parametrized quantum circuits
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85925
dcterms.bibliographicCitation.doi
10.22331/q-2021-11-17-582
dcterms.bibliographicCitation.journaltitle
Quantum
dcterms.bibliographicCitation.originalpublishername
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
dcterms.bibliographicCitation.originalpublisherplace
Wien
dcterms.bibliographicCitation.pagestart
582
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://quantum-journal.org/papers/q-2021-11-17-582/
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2521-327X