dc.contributor.author
Sanna, Antonio
dc.contributor.author
Pellegrini, Camilla
dc.contributor.author
Liebhaber, Eva
dc.contributor.author
Rossnagel, Kai
dc.contributor.author
Franke, Katharina J.
dc.contributor.author
Gross, E. K. U.
dc.date.accessioned
2022-02-07T12:01:09Z
dc.date.available
2022-02-07T12:01:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33920
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33639
dc.description.abstract
We present a scanning tunneling microscopy (STM) and ab-initio study of the anisotropic superconductivity of 2H-NbSe2 in the charge-density-wave (CDW) phase. Differential-conductance spectra show a clear double-peak structure, which is well reproduced by density functional theory simulations enabling full k- and real-space resolution of the superconducting gap. The hollow-centered (HC) and chalcogen-centered (CC) CDW patterns observed in the experiment are mapped onto separate van der Waals layers with different electronic properties. We identify the CC layer as the high-gap region responsible for the main STM peak. Remarkably, this region belongs to the same Fermi surface sheet that is broken by the CDW gap opening. Simulations reveal a highly anisotropic distribution of the superconducting gap within single Fermi sheets, setting aside the proposed scenario of a two-gap superconductivity. Our results point to a spatially localized competition between superconductivity and CDW involving the HC regions of the crystal.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Superconducting properties and materials
en
dc.subject
Theory and computation
en
dc.subject
scanning tunneling microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Real-space anisotropy of the superconducting gap in the charge-density wave material 2H-NbSe2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6
dcterms.bibliographicCitation.doi
10.1038/s41535-021-00412-8
dcterms.bibliographicCitation.journaltitle
npj Quantum Materials
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41535-021-00412-8
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2397-4648
refubium.resourceType.provider
WoS-Alert