dc.contributor.author
Heitz, Julius J. F.
dc.contributor.author
Nádvorník, Lukáš
dc.contributor.author
Balos, Vasileios
dc.contributor.author
Behovits, Yannic
dc.contributor.author
Chekhov, Alexander L.
dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Olejnik, K.
dc.contributor.author
Kašpar, Z.
dc.contributor.author
Geishendorf, K.
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2022-02-07T11:23:51Z
dc.date.available
2022-02-07T11:23:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33917
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33636
dc.description.abstract
We show scalable and complete suppression of the recently reported terahertz-pulse-induced switching between different resistance states of antiferromagnetic CuMnAs thin films by ultrafast gating. The gating functionality is achieved by an optically generated transiently conductive parallel channel in the semiconducting substrate underneath the metallic layer. The photocarrier lifetime determines the timescale of the suppression. As we do not observe a direct impact of the optical pulse on the state of CuMnAs, all observed effects are primarily mediated by the substrate. The sample region of suppressed resistance switching is given by the optical spot size, thereby making our scheme potentially applicable for transient low-power masking of structured areas with feature sizes of about 200 nm and even smaller.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Magnetization switching
en
dc.subject
Magneto-optical effect
en
dc.subject
Photoconductivity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Optically Gated Terahertz-Field-Driven Switching of Antiferromagnetic CuMnAs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
064047
dcterms.bibliographicCitation.doi
10.1103/PhysRevApplied.16.064047
dcterms.bibliographicCitation.journaltitle
Physical Review Applied
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevApplied.16.064047
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2331-7019
refubium.resourceType.provider
WoS-Alert