dc.contributor.author
Ayanbayev, Birzhan
dc.contributor.author
Klebanov, Ilja
dc.contributor.author
Lie, Han Cheng
dc.contributor.author
Sullivan, T. J.
dc.date.accessioned
2022-02-04T11:53:05Z
dc.date.available
2022-02-04T11:53:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33892
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33611
dc.description.abstract
We derive Onsager–Machlup functionals for countable product measures on weighted ℓp subspaces of the sequence space ${\mathbb{R}}^{\mathbb{N}}$. Each measure in the product is a shifted and scaled copy of a reference probability measure on $\mathbb{R}$ that admits a sufficiently regular Lebesgue density. We study the equicoercivity and Γ-convergence of sequences of Onsager–Machlup functionals associated to convergent sequences of measures within this class. We use these results to establish analogous results for probability measures on separable Banach or Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summability parameter 1 ⩽ p ⩽ 2. Together with part I of this paper, this provides a basis for analysis of the convergence of maximum a posteriori estimators in Bayesian inverse problems and most likely paths in transition path theory.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bayesian inverse problems
en
dc.subject
Γ-convergence
en
dc.subject
maximum a posteriori estimation
en
dc.subject
Onsager–Machlup functional
en
dc.subject
small ball probabilities
en
dc.subject
transition path theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Γ-convergence of Onsager–Machlup functionals: II. Infinite product measures on Banach spaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025006
dcterms.bibliographicCitation.doi
10.1088/1361-6420/ac3f82
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
38
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/ac3f82
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert