dc.contributor.author
Ayanbayev, Birzhan
dc.contributor.author
Klebanov, Ilja
dc.contributor.author
Li, Han Cheng
dc.contributor.author
Sullivan, T. J.
dc.date.accessioned
2022-02-04T11:52:08Z
dc.date.available
2022-02-04T11:52:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33891
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33610
dc.description.abstract
The Bayesian solution to a statistical inverse problem can be summarised by a mode of the posterior distribution, i.e. a maximum a posteriori (MAP) estimator. The MAP estimator essentially coincides with the (regularised) variational solution to the inverse problem, seen as minimisation of the Onsager–Machlup (OM) functional of the posterior measure. An open problem in the stability analysis of inverse problems is to establish a relationship between the convergence properties of solutions obtained by the variational approach and by the Bayesian approach. To address this problem, we propose a general convergence theory for modes that is based on the Γ-convergence of OM functionals, and apply this theory to Bayesian inverse problems with Gaussian and edge-preserving Besov priors. Part II of this paper considers more general prior distributions.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bayesian inverse problems
en
dc.subject
Γ-convergence
en
dc.subject
maximum a posteriori estimation
en
dc.subject
Onsager–Machlup functional
en
dc.subject
small ball probabilities
en
dc.subject
transition path theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Γ-convergence of Onsager–Machlup functionals: I. With applications to maximum a posteriori estimation in Bayesian inverse problems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025005
dcterms.bibliographicCitation.doi
10.1088/1361-6420/ac3f81
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
38
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/ac3f81
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert