dc.contributor.author
Haghdoost, M. Rezay
dc.contributor.author
Thethy, B. S.
dc.contributor.author
Nadolski, Maikel
dc.contributor.author
Seo, B.
dc.contributor.author
Paschereit, C. O.
dc.contributor.author
Klein, Rupert
dc.contributor.author
Edgington-Mitchell, D.
dc.contributor.author
Oberleithner, K.
dc.date.accessioned
2022-05-02T07:46:47Z
dc.date.available
2022-05-02T07:46:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33888
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33607
dc.description.abstract
Mitigation of pressure pulsations in the exhaust of a pulse detonation combustor is crucial for operation with a downstream turbine. For this purpose, a device termed the shock divider is designed and investigated. The intention of the divider is to split the leading shock wave into two weaker waves that propagate along separated ducts with different cross sections, allowing the shock waves to travel with different velocities along different paths. The separated shock waves redistribute the energy of the incident shock wave. The shock dynamics inside the divider are investigated using numerical simulations. A second-order dimensional split finite volume MUSCL-scheme is used to solve the compressible Euler equations. Furthermore, low-cost simulations are performed using geometrical shock dynamics to predict the shock wave propagation inside the divider. The numerical simulations are compared to high-speed schlieren images and time-resolved total pressure recording. For the latter, a high-frequency pressure probe is placed at the divider outlet, which is shown to resolve the transient total pressure during the shock passage. Moreover, the separation of the shock waves is investigated and found to grow as the divider duct width ratio increases. The numerical and experimental results allow for a better understanding of the dynamic evolution of the flow inside the divider and inform its capability to reduce the pressure pulsations at the exhaust of the pulse detonation combustor.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Supersonic flow
en
dc.subject
Shock divider
en
dc.subject
Bifurcated ducts
en
dc.subject
Cut-cell method
en
dc.subject
Total pressure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Numerical and experimental evaluation of shock dividers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00193-021-01062-2
dcterms.bibliographicCitation.journaltitle
Shock Waves
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
195
dcterms.bibliographicCitation.pageend
211
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00193-021-01062-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-2153
refubium.resourceType.provider
WoS-Alert