dc.contributor.author
Franz, J.
dc.contributor.author
Czechowicz, K.
dc.contributor.author
Waechter-Stehle, I.
dc.contributor.author
Hellmeier, F.
dc.contributor.author
Razafindrazaka, F.
dc.contributor.author
Kelm, M.
dc.contributor.author
Kempfert, J.
dc.contributor.author
Meyer, A.
dc.contributor.author
Archer, G.
dc.contributor.author
Weese, J.
dc.contributor.author
Hose, R.
dc.contributor.author
Kuehne, T.
dc.contributor.author
Goubergrits, L.
dc.date.accessioned
2022-01-28T07:16:43Z
dc.date.available
2022-01-28T07:16:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33774
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33494
dc.description.abstract
Mitral valve regurgitation (MR) is one of the most prevalent valvular heart diseases. Its quantitative assessment is challenging but crucial for treatment decisions. Using computational fluid dynamics (CFD), we developed a reduced order model (ROM) describing the relationship between MR flow rates, transvalvular pressure differences, and the size and shape of the regurgitant valve orifice. Due to its low computational cost, this ROM could easily be implemented into clinical workflows to support the assessment of MR. We reconstructed mitral valves of 43 patients from 3D transesophageal echocardiographic images and estimated the 3D anatomic regurgitant orifice areas using a shrink-wrap algorithm. The orifice shapes were quantified with three dimensionless shape parameters. Steady-state CFD simulations in the reconstructed mitral valves were performed to analyse the relationship between the regurgitant orifice geometry and the regurgitant hemodynamics. Based on the results, three ROMs with increasing complexity were defined, all of which revealed very good agreement with CFD results with a mean bias below 3% for the MR flow rate. Classifying orifices into two shape groups and assigning group-specific flow coefficients in the ROM reduced the limit of agreement predicting regurgitant volumes from 9.0 ml to 5.7 ml at a mean regurgitant volume of 57 ml.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Mitral valve regurgitation
en
dc.subject
pressure gradient
en
dc.subject
computational fluid dynamics
en
dc.subject
regurgitant orifice area
en
dc.subject
3D transesophageal echocardiography
en
dc.subject
patient-specific model
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
An orifice shape-based reduced order model of patient-specific mitral valve regurgitation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/19942060.2021.1995048
dcterms.bibliographicCitation.journaltitle
Engineering Applications of Computational Fluid Mechanics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Taylor & Francis
dcterms.bibliographicCitation.pagestart
1868
dcterms.bibliographicCitation.pageend
1884
dcterms.bibliographicCitation.volume
15
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1997-003X