dc.contributor.author
Engel, Maximilian
dc.contributor.author
Kuehn, Christian
dc.contributor.author
Petrera, Matteo
dc.contributor.author
Suris, Yuri
dc.date.accessioned
2022-01-17T08:16:36Z
dc.date.available
2022-01-17T08:16:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33562
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33283
dc.description.abstract
We study the problem of preservation of maximal canards for time discretized fast–slow systems with canard fold points. In order to ensure such preservation, certain favorable structure-preserving properties of the discretization scheme are required. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure-preserving properties of the Kahan discretization for quadratic vector fields imply a similar result as in continuous time, guaranteeing the occurrence of maximal canards between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem.
en
dc.format.extent
41 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Slow manifolds
en
dc.subject
Invariant manifolds
en
dc.subject
Blow-up method
en
dc.subject
Loss of normal hyperbolicity
en
dc.subject
Discretization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Discretized Fast–Slow Systems with Canards in Two Dimensions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
19
dcterms.bibliographicCitation.doi
10.1007/s00332-021-09778-2
dcterms.bibliographicCitation.journaltitle
Journal of Nonlinear Science
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00332-021-09778-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-1467