dc.contributor.author
Erdman, Paolo A.
dc.contributor.author
Noé, Frank
dc.date.accessioned
2022-01-14T14:02:46Z
dc.date.available
2022-01-14T14:02:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33549
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33270
dc.description.abstract
The optimal control of open quantum systems is a challenging task but has a key role in improving existing quantum information processing technologies. We introduce a general framework based on reinforcement learning to discover optimal thermodynamic cycles that maximize the power of out-of-equilibrium quantum heat engines and refrigerators. We apply our method, based on the soft actor-critic algorithm, to three systems: a benchmark two-level system heat engine, where we find the optimal known cycle; an experimentally realistic refrigerator based on a superconducting qubit that generates coherence, where we find a non-intuitive control sequence that outperforms previous cycles proposed in literature; a heat engine based on a quantum harmonic oscillator, where we find a cycle with an elaborate structure that outperforms the optimized Otto cycle. We then evaluate the corresponding efficiency at maximum power.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum mechanics
en
dc.subject
quantum thermal machines
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Identifying optimal cycles in quantum thermal machines with reinforcement-learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1
dcterms.bibliographicCitation.doi
10.1038/s41534-021-00512-0
dcterms.bibliographicCitation.journaltitle
npj Quantum Information
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41534-021-00512-0
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2056-6387