dc.contributor.author
Meldgaard, Søren Ager
dc.contributor.author
Köhler, Jonas
dc.contributor.author
Mortensen, Henrik Lund
dc.contributor.author
Christiansen, Mads-Peter V.
dc.contributor.author
Noé, Frank
dc.contributor.author
Hammer, Bjørk
dc.date.accessioned
2022-01-07T11:33:27Z
dc.date.available
2022-01-07T11:33:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33377
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33098
dc.description.abstract
Chemical space is routinely explored by machine learning methods to discover interesting molecules, before time-consuming experimental synthesizing is attempted. However, these methods often rely on a graph representation, ignoring 3D information necessary for determining the stability of the molecules. We propose a reinforcement learning (RL) approach for generating molecules in Cartesian coordinates allowing for quantum chemical prediction of the stability. To improve sample-efficiency we learn basic chemical rules from imitation learning (IL) on the GDB-11 database to create an initial model applicable for all stoichiometries. We then deploy multiple copies of the model conditioned on a specific stoichiometry in a RL setting. The models correctly identify low energy molecules in the database and produce novel isomers not found in the training set. Finally, we apply the model to larger molecules to show how RL further refines the IL model in domains far from the training data.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
reinforcement learning
en
dc.subject
chemical physics
en
dc.subject
chemical space
en
dc.subject
global optimization
en
dc.subject
imitation learning
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Generating stable molecules using imitation and reinforcement learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
015008
dcterms.bibliographicCitation.doi
10.1088/2632-2153/ac3eb4
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/ac3eb4
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert