dc.contributor.author
Lindner, Marcus
dc.contributor.author
Laporte, Anna
dc.contributor.author
Block, Stephan
dc.contributor.author
Elomaa, Laura
dc.contributor.author
Weinhart, Marie
dc.date.accessioned
2021-12-16T12:01:46Z
dc.date.available
2021-12-16T12:01:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33168
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32890
dc.description.abstract
Gastrointestinal (GI) mucus plays a pivotal role in the tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro GI models with a physiologically relevant mucus layer, studies with deeper insights into structural and compositional changes upon chemical or physical manipulation of the system are rare. To obtain an improved mucus-containing cell model, we developed easy-to-use, reusable culture chambers that facilitated the application of GI shear stresses (0.002–0.08 dyn∙cm−2) to cells on solid surfaces or membranes of cell culture inserts in bioreactor systems, thus making them readily accessible for subsequent analyses, e.g., by confocal microscopy or transepithelial electrical resistance (TEER) measurement. The human mucus-producing epithelial HT29-MTX cell-line exhibited superior reorganization into 3-dimensional villi-like structures with highly proliferative tips under dynamic culture conditions when compared to static culture (up to 180 vs. 80 µm in height). Additionally, the median mucus layer thickness was significantly increased under flow (50 ± 24 vs. 29 ± 14 µm (static)), with a simultaneous accelerated maturation of the cells into a goblet-like phenotype. We demonstrated the strong impact of culture conditions on the differentiation and reorganization of HT29-MTX cells. The results comprise valuable advances towards the improvement of existing GI and mucus models or the development of novel systems using our newly designed culture chambers.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
3D-printed insert chamber
en
dc.subject
cell-based mucus model
en
dc.subject
cellular self-organization
en
dc.subject
CFD simulation
en
dc.subject
goblet cell differentiation
en
dc.subject
native mucus thickness
en
dc.subject
physiological fluid flow
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Physiological Shear Stress Enhances Differentiation, Mucus-Formation and Structural 3D Organization of Intestinal Epithelial Cells In Vitro
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2062
dcterms.bibliographicCitation.doi
10.3390/cells10082062
dcterms.bibliographicCitation.journaltitle
Cells
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.3390/cells10082062
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Organische Chemie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2073-4409