dc.contributor.author
Muskat, Linda C.
dc.contributor.author
Kerkhoff, Yannic
dc.contributor.author
Humbert, Pascal
dc.contributor.author
Nattkemper, Tim W.
dc.contributor.author
Eilenberg, Jørgen
dc.contributor.author
Patel, Anant V.
dc.date.accessioned
2021-12-10T09:14:32Z
dc.date.available
2021-12-10T09:14:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33068
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32791
dc.description.abstract
The present work describes a new computer-assisted image analysis method for the rapid, simple, objective and reproducible quantification of actively discharged fungal spores which can serve as a manual for laboratories working in this context. The method can be used with conventional laboratory equipment by using bright field microscopes, standard scanners and the open-source software ImageJ. Compared to other conidia quantification methods by computer-assisted image analysis, the presented method bears a higher potential to be applied for large-scale sample quantities. The key to make quantification faster is the calculation of the linear relationship between the gray value and the automatically counted number of conidia that has only to be performed once in the beginning of analysis. Afterwards, the gray value is used as single parameter for quantification. The fast, easy and objective determination of sporulation capacity enables facilitated quality control of fungal formulations designed for biological pest control.
• Rapid, simple, objective and reproducible quantification of fungal sporulation suitable for large-scale sample quantities.
• Requires conventional laboratory equipment and open-source software without technical or computational expertise.
• The number of automatically counted conidia can be correlated with the gray value and after initial calculation of a linear fit, the gray value can be applied as single quantification parameter.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
(Semi-)Automatic conidia counting
en
dc.subject
Computer-assisted sporulation quantification
en
dc.subject
Entomopathogenic fungi
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::579 Mikroorganismen, Pilze, Algen
dc.title
Image analysis-based quantification of fungal sporulation by automatic conidia counting and gray value correlation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
101218
dcterms.bibliographicCitation.doi
10.1016/j.mex.2021.101218
dcterms.bibliographicCitation.journaltitle
MethodsX
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.mex.2021.101218
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2215-0161
refubium.resourceType.provider
WoS-Alert