dc.contributor.author
Diekmann, Christopher J.
dc.contributor.author
Schneider, Matthias
dc.contributor.author
Knippertz, Peter
dc.contributor.author
Vries, Andries J.
dc.contributor.author
Pfahl, Stephan
dc.contributor.author
Aemisegger, Franziska
dc.contributor.author
Dahinden, Fabienne
dc.contributor.author
Ertl, Benjamin
dc.contributor.author
Khosrawi, Farahnaz
dc.contributor.author
Wernli, Heini
dc.date.accessioned
2021-12-06T13:52:03Z
dc.date.available
2021-12-06T13:52:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33022
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32746
dc.description.abstract
We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid-tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high-resolution isotope-enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2O and its isotopologue HDO (expressed as delta D) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro-meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2O, delta D} distributions. The use of idealized process curves in the {H2O, delta D} phase space allows us to attribute isotopic changes to contributions from (a) air mass mixing, (b) Rayleigh condensation during convection, and (c) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration in saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of {H2O, delta D} over Africa and other regions in order to better quantify characteristics of the hydrological cycle.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stable water isotopes
en
dc.subject
Lagrangian trajectories
en
dc.subject
West African Monsoon
en
dc.subject
air mass mixing
en
dc.subject
rain interaction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
A Lagrangian Perspective on Stable Water Isotopes During the West African Monsoon
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2021JD034895
dcterms.bibliographicCitation.doi
10.1029/2021JD034895
dcterms.bibliographicCitation.journaltitle
JGR Atmospheres
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.volume
126
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2021JD034895
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-8996
refubium.resourceType.provider
WoS-Alert