dc.contributor.author
Rust, Christian
dc.contributor.author
Li, Han
dc.contributor.author
Gordeev, Georgy
dc.contributor.author
Spari, Manuel
dc.contributor.author
Guttmann, Markus
dc.contributor.author
Jin, Qihao
dc.contributor.author
Reich, Stephanie
dc.contributor.author
Flavel, Benjamin S
dc.date.accessioned
2022-03-31T13:02:22Z
dc.date.available
2022-03-31T13:02:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33020
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32744
dc.description.abstract
Single wall carbon nanotubes (SWCNTs) dispersed by negatively charged sodium deoxycholate (DOC) or positively charged cetrimonium bromide (CTAB) are shown to assemble into aligned films (3.8 cm2) on polycarbonate membranes by slow flow dead-end filtration. Global alignment (S2D max ≈ 0.85) is obtained on both pristine polyvinylpyrrolidone (PVP) coated membranes and those with an intentional 150–600 nm groove pattern from hot embossing. In all cases, a custom microfluidic setup capable of precise control and measurement of the volume rate, transmembrane pressure, and the filtration resistance is used to follow SWCNT film formation. Conditions associated with the formation of SWCNT crystallites or their global alignment are identified and these are discussed in terms of membrane fouling and the interaction potential between the surface of the membrane and nanotubes. SWCNT alignment is characterized by cross-polarized microscopy, atomic force microscopy, scanning electron microscopy (SEM), and Raman spectroscopy.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
aligned nanomaterials
en
dc.subject
zeta potential
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Global Alignment of Carbon Nanotubes via High Precision Microfluidic Dead-End Filtration
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
87278
dcterms.bibliographicCitation.articlenumber
2107411
dcterms.bibliographicCitation.doi
10.1002/adfm.202107411
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202107411
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert