dc.contributor.author
Raharinirina, N. Alexia
dc.contributor.author
Peppert, Felix
dc.contributor.author
Kleist, Max von
dc.contributor.author
Schütte, Christof
dc.contributor.author
Sunkara, Vikram
dc.date.accessioned
2021-12-06T09:19:24Z
dc.date.available
2021-12-06T09:19:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33009
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32733
dc.description.abstract
Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference methods.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
RNA sequencing
en
dc.subject
time-course snapshots
en
dc.subject
Markov chains
en
dc.subject
chemical master equation
en
dc.subject
moment equations
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
100332
dcterms.bibliographicCitation.doi
10.1016/j.patter.2021.100332
dcterms.bibliographicCitation.journaltitle
Patterns
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.patter.2021.100332
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2666-3899
refubium.resourceType.provider
WoS-Alert