dc.contributor.author
de Wolff, Babette
dc.contributor.author
Schneider, Isabelle
dc.date.accessioned
2021-11-25T11:29:05Z
dc.date.available
2021-11-25T11:29:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32853
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32579
dc.description.abstract
In the spirit of the well-known odd-number limitation, we study the failure of Pyragas control of periodic orbits and equilibria. Addressing the periodic orbits first, we derive a fundamental observation on the invariance of the geometric multiplicity of the trivial Floquet multiplier. This observation leads to a clear and unifying understanding of the odd-number limitation, both in the autonomous and the non-autonomous setting. Since the presence of the trivial Floquet multiplier governs the possibility of successful stabilization, we refer to this multiplier as the determining center. The geometric invariance of the determining center also leads to a necessary condition on the gain matrix for the control to be successful. In particular, we exclude scalar gains. The application of Pyragas control on equilibria does not only imply a geometric invariance of the determining center but surprisingly also on centers that resonate with the time delay. Consequently, we formulate odd- and any-number limitations both for real eigenvalues together with an arbitrary time delay as well as for complex conjugated eigenvalue pairs together with a resonating time delay. The very general nature of our results allows for various applications.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
determining and resonating centers
en
dc.subject
geometric invariance
en
dc.subject
limitations of Pyragas control
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Geometric invariance of determining and resonating centers: Odd- and any-number limitations of Pyragas control
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
063125
dcterms.bibliographicCitation.doi
10.1063/5.0050560
dcterms.bibliographicCitation.journaltitle
Chaos: An Interdisciplinary Journal of Nonlinear Science
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0050560
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7682
refubium.resourceType.provider
WoS-Alert