dc.contributor.author
Feldwieser, Florian
dc.date.accessioned
2018-06-07T17:00:16Z
dc.date.available
2015-12-07T08:11:25.464Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/3278
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-7478
dc.description.abstract
Stürze im Alter führen häufig zu einer Verminderung der Selbstständigkeit und
Einschränkungen der Mobilität. Sturzfolgen zählen zu den häufigsten
gesundheitlichen Beeinträchtigungen älterer Menschen. Typische
Beschwerdebilder sind psychische Folgeerkrankungen sowie physische Traumata
welche erhebliche Kosten für das Gesundheitssystem bedeuten. Automatische
Sturzerkennungssysteme könnten im Notfall oder bei Bewusstlosigkeit schnell
für medizinische Hilfe sorgen. Vorbeugend könnten Sturzpräventionsprogramme
gezielt körperliche Sturzrisikofaktoren älterer Menschen reduzieren. Jedoch
ist es mit den gegenwärtig verfügbaren Methoden schwierig und kostenintensiv
sturzgefährdete Personen korrekt zu identifizieren, um entsprechende Programme
zielgenau zu administrieren. Über die Möglichkeiten der automatisierten
häuslichen Sturzerfassung ist bisher wenig bekannt. Methodik: Ziel der Studien
war die technische- und Assessment-basierte Sturzvorhersage bei älteren
Personen mit kognitiven Einschränkungen im klinisch stationären Bereich sowie
die technische Sturzerkennung und Assessment-basierte Sturzvorhersage älterer
Personen ohne kognitive Einschränkungen im häuslichen Umfeld. Weitere Ziele
waren die Untersuchung der Akzeptanz der Sensorik und die Analyse der
Sturzursachen und Sturzfolgen. Ergebnis: In der Studie zur Sturzvorhersage
(n=40) war mittelfristig eine technikbasierte Sturzvorhersage mit einer
Sensitivität von 78,2% und einer Spezifität von 71,2% möglich. Die
geriatrischen Assessments waren nicht in der Lage statistisch signifikante
Werte zur Sturzprädiktion zu liefern. Die Untersuchung zur Sturzerkerkennung
(n=3) konnte 2 von 9 stattgefunden Stürzen korrekt erkennen, jedoch war die
Anzahl der falsch erkannten Stürze (n=193) sehr hoch. Im Untersuchungszeitraum
von 108 Tagen wurden 1,87 Stürze pro Tag registriert. In einer weiteren Studie
des Autoren zur Sturzerkennung (n=28) wurden 12 von insgesamt 15 Stürzen
korrekt erkannt und 3248 falsch erkannt. 1225.7 Messtage konnten aufgezeichnet
werden wobei täglich 2.66 Stürze registriert wurden. Die geriatrischen
Assessments konnten keine Aussage über das tatsächliche Sturzrisiko zu
treffen. Hauptursachen der Stürze waren Stolpern, Ausrutschen sowie Stürzte
infolge von starkem Toilettendrang. Die eingesetzten Sensoren wurden generell
als nützlich oder sehr nützlich empfunden, die Akzeptanz und Bereitschaft
erneut an einer ähnlichen Studie teilzunehmen verringerte sich jedoch von 100%
vor auf 78,6% nach der Studienteilnahme. Schlussfolgerung: Eine Vorhersage des
Sturzrisikos älterer Personen ist mittelfristig möglich. Die hier beobachtete
hohe Anzahl der falsch positiv erkannten Stürze ist 100 – 270-mal höher als
die der korrekt erkannten Stürze. Die dieser Studie zugrunde liegenden
Referenzdaten zur Sturzerkennung aus Laborbedingungen sind nicht auf das
Sturzverhalten älterer Menschen im häuslichen Umfeld anwendbar. Weitere
Untersuchungen an der Zielgruppe zur Verbesserung der Zuverlässigkeit solcher
Systeme sind deshalb unabdingbar. Die Ergebnisse der Sturzursachen decken sich
mit denen der bekannten Studienlage. Möglichkeiten zur Steigerung der
Akzeptanz der Sensorik sollten weiter erforscht werden.
de
dc.description.abstract
Introduction: Falls in old age are associated with a reduction of autonomy and
mobility and are one the main threads to the health of older adults. Physical
and mental consequences of falls are a large financial burden to the
healthcare system. Automatic fall detection devices could call of medical help
in case of a fall and fall prevention programmers could specifically address
the deficits of persons at risk of falling. Currently it is difficult and
expensive to correctly identify persons at risk of falling and little is known
about domestic fall detection. Methdology: Aim of the studies was the
technical and assessment-based fall-prediction of older adults with cognitive
impairments in an in-patient setting and the technical fall-detection and
assessment- based fall-prediction of older persons without cognitive
impairments in a domestic environment. Further goals were the evaluation of
the acceptance of the sensors and analysis of the causes of falls. Results:
The study on fall-detection (n=40) revealed that a midterm fall-prediction is
possible with a sensitivity of 78.2% and specificity of 71.2%. The geriatric
assessments could not provide statically significant values for fall-
prediction. The study on fall-detection (n=3) identified 2 of the 9 falls
correctly, the number of false positive falls was very high (n=193). Within
the investigation-period of 108 days 1.87 falls were registered. In a further
study of the author on that topic (n=28) 12 of overall 15 falls were correctly
identified on 3248 incorrectly. 1225.7 days were recorded and 2.66 falls
registered per day. The geriatric assessments were not able to predict fall
events. Reasons for falls were stumbling, slipping and falls due urge to use
the toilet. The sensors were generally viewed as useful or very useful,
however the willingness to participate in a similar study decreased form 100%
before the study to 78.6% after the study. Conclusion: A midterm prediction of
the fall risk of older adults is possible. The number of false alarms was
100-270 times higher than the number of correctly identified falls. The
reverence data for fall detection of this study are based on laboratory trails
and is not transferable to detect falls in older adults. Further
investigations on seniors are necessary to inprove the reliability of the
tested systems. The results for fall causes are consistent with those of known
studies. Ways to increase the acceptance of the sensors must be found.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
fall detection
dc.subject
domestic environment
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Technikgestützte Sturzerkennung und Sturzrisikobestimmung älterer Personen im
häuslichen Bereich
dc.contributor.contact
florian.feldwieser@charite.de
dc.contributor.firstReferee
N.N.
dc.contributor.furtherReferee
N.N.
dc.date.accepted
2015-12-11
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000100617-7
dc.title.translated
Sensorbased fall detection and fall prediction of senior citizens in their
domestic environment
en
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDISS_thesis_000000100617
refubium.mycore.derivateId
FUDISS_derivate_000000018126
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access