dc.contributor.author
Kaßmann, Mario
dc.contributor.author
Szijártó, István András
dc.contributor.author
García‐Prieto, Concha F.
dc.contributor.author
Fan, Gang
dc.contributor.author
Schleifenbaum, Johanna
dc.contributor.author
Anistan, Yoland‐Marie
dc.contributor.author
Tabeling, Christoph
dc.contributor.author
Shi, Yu
dc.contributor.author
Noble, Ferdinand le
dc.contributor.author
Witzenrath, Martin
dc.contributor.author
Huang, Yu
dc.contributor.author
Markó, Lajos
dc.contributor.author
Nelson, Mark T.
dc.contributor.author
Gollasch, Maik
dc.date.accessioned
2022-01-10T11:23:19Z
dc.date.available
2022-01-10T11:23:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32772
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32498
dc.description.abstract
Background: Hypertension is the major risk factor for cardiovascular disease, the most common cause of death worldwide. Resistance arteries are capable of adapting their diameter independently in response to pressure and flow-associated shear stress. Ryanodine receptors (RyRs) are major Ca2+-release channels in the sarcoplasmic reticulum membrane of myocytes that contribute to the regulation of contractility. Vascular smooth muscle cells exhibit 3 different RyR isoforms (RyR1, RyR2, and RyR3), but the impact of individual RyR isoforms on adaptive vascular responses is largely unknown. Herein, we generated tamoxifen-inducible smooth muscle cell-specific RyR2-deficient mice and tested the hypothesis that vascular smooth muscle cell RyR2s play a specific role in elementary Ca2+ signaling and adaptive vascular responses to vascular pressure and/or flow.
Methods and Results: Targeted deletion of the Ryr2 gene resulted in a complete loss of sarcoplasmic reticulum-mediated Ca2+-release events and associated Ca2+-activated, large-conductance K+ channel currents in peripheral arteries, leading to increased myogenic tone and systemic blood pressure. In the absence of RyR2, the pulmonary artery pressure response to sustained hypoxia was enhanced, but flow-dependent effects, including blood flow recovery in ischemic hind limbs, were unaffected.
Conclusions: Our results establish that RyR2-mediated Ca2+-release events in VSCM s specifically regulate myogenic tone (systemic circulation) and arterial adaptation in response to changes in pressure (hypoxic lung model), but not flow. They further suggest that vascular smooth muscle cell-expressed RyR2 deserves scrutiny as a therapeutic target for the treatment of vascular responses in hypertension and chronic vascular diseases.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
BKCa channel
en
dc.subject
blood pressure
en
dc.subject
Ca(2+)sparks
en
dc.subject
pulmonary hypertension
en
dc.subject
ryanodine receptors
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Role of Ryanodine Type 2 Receptors in Elementary Ca 2+ Signaling in Arteries and Vascular Adaptive Responses
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e010090
dcterms.bibliographicCitation.doi
10.1161/jaha.118.010090
dcterms.bibliographicCitation.journaltitle
Journal of the American Heart Association
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.volume
8
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31030596
dcterms.isPartOf.eissn
2047-9980