dc.contributor.author
Wilde, Dominik
dc.contributor.author
Krämer, Andreas
dc.contributor.author
Reith, Dirk
dc.contributor.author
Foysi, Holger
dc.date.accessioned
2021-11-05T08:41:02Z
dc.date.available
2021-11-05T08:41:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32559
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32283
dc.description.abstract
Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step sizes is dictated by physics rather than spatial discretization.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Compressible flows
en
dc.subject
Kinetic theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
High-order semi-Lagrangian kinetic scheme for compressible turbulence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025301
dcterms.bibliographicCitation.doi
10.1103/PhysRevE.104.025301
dcterms.bibliographicCitation.journaltitle
Physical Review E
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
104
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevE.104.025301
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2470-0053
refubium.resourceType.provider
WoS-Alert