dc.contributor.author
Glielmo, Aldo
dc.contributor.author
Husic, Brooke E.
dc.contributor.author
Rodriguez, Alex
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Noé, Frank
dc.contributor.author
Laio, Alessandro
dc.date.accessioned
2021-11-03T12:01:35Z
dc.date.available
2021-11-03T12:01:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32489
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32214
dc.description.abstract
Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the methods of unsupervised learning that have been most commonly used to investigate simulation data and indicate likely directions for further developments in the field. In particular, we discuss feature representation of molecular systems and present state-of-the-art algorithms of dimensionality reduction, density estimation, and clustering, and kinetic models. We divide our discussion into self-contained sections, each discussing a specific method. In each section, we briefly touch upon the mathematical and algorithmic foundations of the method, highlight its strengths and limitations, and describe the specific ways in which it has been used-or can be used-to analyze molecular simulation data.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Redox reactions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Unsupervised Learning Methods for Molecular Simulation Data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.chemrev.0c01195
dcterms.bibliographicCitation.journaltitle
Chemical Reviews
dcterms.bibliographicCitation.number
16
dcterms.bibliographicCitation.pagestart
9722
dcterms.bibliographicCitation.pageend
9758
dcterms.bibliographicCitation.volume
121
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.chemrev.0c01195
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-6890
refubium.resourceType.provider
WoS-Alert