dc.contributor.author
Klus, Stefan
dc.contributor.author
Gelß, Patrick
dc.contributor.author
Nüske, Feliks
dc.contributor.author
Noé, Frank
dc.date.accessioned
2021-11-01T12:40:09Z
dc.date.available
2021-11-01T12:40:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32449
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32174
dc.description.abstract
We derive symmetric and antisymmetric kernels by symmetrizing and antisymmetrizing conventional kernels and analyze their properties. In particular, we compute the feature space dimensions of the resulting polynomial kernels, prove that the reproducing kernel Hilbert spaces induced by symmetric and antisymmetric Gaussian kernels are dense in the space of symmetric and antisymmetric functions, and propose a Slater determinant representation of the antisymmetric Gaussian kernel, which allows for an efficient evaluation even if the state space is high-dimensional. Furthermore, we show that by exploiting symmetries or antisymmetries the size of the training data set can be significantly reduced. The results are illustrated with guiding examples and simple quantum physics and chemistry applications.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
symmetry and antisymmetry
en
dc.subject
reproducing kernel Hilbert spaces
en
dc.subject
quantum physics
en
dc.subject
quantum chemistry
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Symmetric and antisymmetric kernels for machine learning problems in quantum physics and chemistry
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
045016
dcterms.bibliographicCitation.doi
10.1088/2632-2153/ac14ad
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/ac14ad
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert