dc.contributor.author
Faenzi, Daniele
dc.contributor.author
Malaspina, Francesco
dc.contributor.author
Sanna, Giangiacomo
dc.date.accessioned
2021-10-18T11:31:29Z
dc.date.available
2021-10-18T11:31:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32353
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32078
dc.description.abstract
We show a remarkable property of the CM-wild variety P-1 x P-2 , namely that the only ACM sheaves moving in positive-dimensional families are Ulrich bundles. A complete classification of the non-Ulrich range is given.
We prove that this feature is unique in the sense that any other ACM reduced closed subscheme X subset of P-N of dimension n >= 1 belongs to the well-known list of CM-finite or CM-tame varieties, or else it remains CM-wild upon removing Ulrich sheaves.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Cohen-Macaulay modules
en
dc.subject
arithmetically Cohen-Macaulay sheaves
en
dc.subject
Ulrich sheaves
en
dc.subject
moduli of vector bundles
en
dc.subject
wild representation type
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Non-Ulrich representation type
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.14231/AG-2021-012
dcterms.bibliographicCitation.journaltitle
Algebraic Geometry
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
405
dcterms.bibliographicCitation.pageend
429
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.14231/AG-2021-012
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2214-2584
refubium.resourceType.provider
WoS-Alert