dc.contributor.author
Alcón, Isaac
dc.contributor.author
Calogero, Gaetano
dc.contributor.author
Papior, Nick
dc.contributor.author
Brandbyge, Mads
dc.date.accessioned
2021-10-18T10:55:47Z
dc.date.available
2021-10-18T10:55:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31904
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31636
dc.description.abstract
During the last decade, on-surface fabricated graphene nanoribbons (GNRs) have gathered enormous attention due to their semiconducting π-conjugated nature and atomically precise structure. A significant breakthrough is the recent fabrication of nanoporous graphene (NPG) as a 2D array of laterally bonded GNRs. This covalent integration of GNRs could enable complex electronic functionality at the nanoscale; however, for that, it is crucial to externally control the electronic coupling between GNRs within NPGs, which, to date, has not been possible. Using quantum chemical calculations and large-scale transport simulations, this study demonstrates that such control is enabled in a newly designed quinone-NPG (q-NPG) thanks to its GNRs inter-connections based on electroactive para-benzoquinone units. As a result, the spatial distribution of injected currents in q-NPG may be tuned, with sub-nanometer precision, via the application of external electrostatic gates and electrochemical means. These results thus provide a fundamental strategy to design organic nanodevices with built-in externally tunable electronics and spintronics, which is key for future applications such as bio-chemical nanosensing and carbon nanoelectronics.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
density functional theory
en
dc.subject
electrochemical
en
dc.subject
graphene nanoribbons
en
dc.subject
nanoporous graphene
en
dc.subject
quantum transport
en
dc.subject
spin filtering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Electrochemical Control of Charge Current Flow in Nanoporous Graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2104031
dcterms.bibliographicCitation.doi
10.1002/adfm.202104031
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
40
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202104031
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert