dc.contributor.author
Walter, Paul
dc.contributor.author
Groß, Marcus
dc.contributor.author
Schmid, Timo
dc.contributor.author
Tzavidis, Nikos
dc.date.accessioned
2021-11-01T11:03:47Z
dc.date.available
2021-11-01T11:03:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31849
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31582
dc.description.abstract
One popular small area estimation method for estimating poverty and inequality indicators is the empirical best predictor under the unit-level nested error regression model with a continuous dependent variable. However, parameter estimation is more challenging when the response variable is grouped due to data confidentiality concerns or concerns about survey response burden. The work in this paper proposes methodology that enables fitting a nested error regression model when the dependent variable is grouped. Model parameters are then used for small area prediction of finite population parameters of interest. Model fitting in the case of a grouped response variable is based on the use of a stochastic expectation–maximization algorithm. Since the stochastic expectation–maximization algorithm relies on the Gaussian assumptions of the unit-level error terms, adaptive transformations are incorporated for handling departures from normality. The estimation of the mean squared error of the small area parameters is facilitated by a parametric bootstrap that captures the additional uncertainty due to the grouping mechanism and the possible use of adaptive transformations. The empirical properties of the proposed methodology are assessed by using model-based simulations and its relevance is illustrated by estimating deprivation indicators for municipalities in the Mexican state of Chiapas.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
data confidentiality
en
dc.subject
interval-censored data
en
dc.subject
nested error regression model
en
dc.subject
small area estimation
en
dc.subject
survey response burden
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::330 Wirtschaft
dc.title
Domain prediction with grouped income data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/rssa.12736
dcterms.bibliographicCitation.journaltitle
Journal of the Royal Statistical Society: Series A (Statistics in Society)
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1501
dcterms.bibliographicCitation.pageend
1523
dcterms.bibliographicCitation.volume
184
dcterms.bibliographicCitation.url
https://doi.org/10.1111/rssa.12736
refubium.affiliation
Wirtschaftswissenschaft
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1467-985X
refubium.resourceType.provider
WoS-Alert