dc.contributor.author
Sweke, Ryan
dc.contributor.author
Kesselring, Markus S.
dc.contributor.author
Nieuwenburg, Evert P. L. van
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2021-08-24T08:07:34Z
dc.date.available
2021-08-24T08:07:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31733
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31464
dc.description.abstract
Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
quantum error correction
en
dc.subject
reinforcement learning
en
dc.subject
fault tolerant quantum computing
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Reinforcement learning decoders for fault-tolerant quantum computation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025005
dcterms.bibliographicCitation.doi
10.1088/2632-2153/abc609
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/abc609
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert