dc.contributor.author
Anastos, Michael
dc.contributor.author
Frieze, Alan
dc.date.accessioned
2021-11-09T12:14:31Z
dc.date.available
2021-11-09T12:14:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31683
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31414
dc.description.abstract
We discuss the length L -> c,n of the longest directed cycle in the sparse random digraph Dn,p,p=c/n, c constant. We show that for large c there exists a function f ->(c) such that L -> c,n/n -> f ->(c) a.s. The function f ->(c)=1- n-ary sumation k=1 infinity pk(c)e-kc where pk is a polynomial in c. We are only able to explicitly give the values p1,p2, although we could in principle compute any pk.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
longest cycle
en
dc.subject
random digraphs
en
dc.subject
scaling limit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A scaling limit for the length of the longest cycle in a sparse random digraph
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/rsa.21030
dcterms.bibliographicCitation.journaltitle
Random Structures & Algorithms
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
3
dcterms.bibliographicCitation.pageend
24
dcterms.bibliographicCitation.volume
60
dcterms.bibliographicCitation.url
https://doi.org/10.1002/rsa.21030
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1098-2418