dc.contributor.author
Mitsui, Takahito
dc.contributor.author
Boers, Niklas
dc.date.accessioned
2021-08-11T08:44:01Z
dc.date.available
2021-08-11T08:44:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31594
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31326
dc.description.abstract
Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability—especially at seasonal time scales—is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Indian Summer monsoon onset
en
dc.subject
seasonal prediction
en
dc.subject
artificial neural network
en
dc.subject
echo state network
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Seasonal prediction of Indian summer monsoon onset with echo state networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
074024
dcterms.bibliographicCitation.doi
10.1088/1748-9326/ac0acb
dcterms.bibliographicCitation.journaltitle
Environmental Research Letters
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1748-9326/ac0acb
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1748-9326
refubium.resourceType.provider
WoS-Alert