dc.contributor.author
Yang, Liangtao
dc.contributor.author
Kuo, Liang-Yin
dc.contributor.author
Lopez del Amo, Juan Miguel
dc.contributor.author
Nayak, Prasant Kumar
dc.contributor.author
Mazzio, Katherine A.
dc.contributor.author
Maletti, Sebastian
dc.contributor.author
Mikhailova, Daria
dc.contributor.author
Giebeler, Lars
dc.contributor.author
Kaghazchi, Payam
dc.contributor.author
Rojo, Teofilo
dc.date.accessioned
2021-10-01T11:38:24Z
dc.date.available
2021-10-01T11:38:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31584
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31316
dc.description.abstract
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
layered oxides
en
dc.subject
Na 0.67Mn 0.6Ni 0.2Li 0.2O 2 cathodes
en
dc.subject
sodium ion batteries
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Structural Aspects of P2-Type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodium-Ion Batteries
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2102939
dcterms.bibliographicCitation.doi
10.1002/adfm.202102939
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
38
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202102939
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert