dc.contributor.author
Bonati, Irene
dc.contributor.author
Lasbleis, Marine
dc.contributor.author
Noack, Lena
dc.date.accessioned
2021-08-05T07:03:05Z
dc.date.available
2021-08-05T07:03:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31529
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31260
dc.description.abstract
Most of the large rocky bodies in the solar system display evidence of past and/or current magnetic activity, driven by thermochemical convection in an electrically conducting fluid layer. The discovery of a large number of extrasolar planets motivates the search for magnetic fields beyond the solar system. While current observations are limited to providing planetary radii and minimum masses, studying the evolution of exoplanets' magnetic fields and their interaction with the atmosphere can open new avenues for constraining interior properties from future atmospheric observations. Here, we investigate the evolution of massive rocky planets (0.8 − 2 MEarth) with different bulk and mantle iron contents. Starting from their temperature profiles after accretion, we determine the structure of the core and model its subsequent thermal and magnetic evolution over 5 Gyr. We find that the planetary iron inventory and distribution strongly affect core structure, evolution, and the lifetime of a magnetic field. Planets with large bulk and mantle iron contents tend to feature large solid inner cores, which can grow up to the liquid outer core radius, shutting down any pre-existing magnetic activity. Consequently, the longest dynamo lifetimes (∼ 4.25 Gyr) are obtained for massive planets with intermediate iron inventories. The smaller inner core radii and the chemical buoyancy fluxes introduced by the presence of light impurities can extend the magnetic field lifetimes to more than 5 Gyr. While the calculated magnetic fields are too weak to be detected by ground facilities, indirect observations may provide valuable insights into exoplanetary dynamos.
en
dc.format.extent
28 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
planetary cores
en
dc.subject
planetary evolution
en
dc.subject
planetary interiors
en
dc.subject
magnetic field
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Structure and Thermal Evolution of Exoplanetary Cores
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2020JE006724
dcterms.bibliographicCitation.doi
10.1029/2020JE006724
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Planets
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
126
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2020JE006724
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-9100
refubium.resourceType.provider
WoS-Alert