dc.contributor.author
Fiedler, Sebastian
dc.contributor.author
Monteiro, José A. F.
dc.contributor.author
Hulvey, Kristin B.
dc.contributor.author
Standish, Rachel J.
dc.contributor.author
Perring, Michael P.
dc.contributor.author
Tietjen, Britta
dc.date.accessioned
2021-08-04T09:41:52Z
dc.date.available
2021-08-04T09:41:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31523
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31254
dc.description.abstract
1. Ecological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Plants and their traits play a major role in the functioning of an ecosystem. Therefore, successful restoration towards long-term multifunctionality requires a fundamental mechanistic understanding of this link under changing climate. An integrated approach of empirical research and simulation modelling with a focus on plant traits can allow this understanding.
2. Based on empirical data from a large-scale restoration project in a Mediterranean-type ecosystem in Western Australia, we developed and validated the spatially explicit simulation model Modelling Ecosystem Functions and Services based on Traits (ModEST), which calculates coupled dynamics of nutrients, water and individual plants characterised by functional traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions that can be linked to ecosystem services, as well as trade-offs and synergies among the functions under current and future climatic conditions.
3. Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity and thus the choice and weighting of these functions affected multifunctionality. In addition, we found that trade-offs and synergies among functions shifted with climate change due to different direct and indirect (mediated via community trait changes) effects of climate change on functions.
4. Synthesis and application. With our simulation model Modelling Ecosystem Functions and Services based on Traits (ModEST), we show that restoration towards multifunctionality might be challenging not only under current conditions but also in the long-term. However, once ModEST is parameterised and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
biodiversity
en
dc.subject
climate change
en
dc.subject
ecosystem services
en
dc.subject
functional traits
en
dc.subject
Mediterranean-type ecosystem
en
dc.subject
multifunctionality
en
dc.subject
plant traits
en
dc.subject
simulation model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Global change shifts trade-offs among ecosystem functions in woodlands restored for multifunctionality
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/1365-2664.13900
dcterms.bibliographicCitation.journaltitle
Journal of Applied Ecology
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1705
dcterms.bibliographicCitation.pageend
1717
dcterms.bibliographicCitation.volume
58
dcterms.bibliographicCitation.url
https://doi.org/10.1111/1365-2664.13900
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1365-2664