dc.contributor.author
Hausmann, J. Niklas
dc.contributor.author
Beltrán-Suito, Rodrigo
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Hlukhyy, Viktor
dc.contributor.author
Fässler, Thomas F.
dc.contributor.author
Dau, Holger
dc.contributor.author
Driess, Matthias
dc.contributor.author
Menezes, Prashanth W.
dc.date.accessioned
2021-07-26T11:12:56Z
dc.date.available
2021-07-26T11:12:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31398
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31131
dc.description.abstract
In a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIIIOxHy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon-poor iron–silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X-ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm−2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5-hydroxymethylfurfural (HMF).
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
alkaline oxygen evolution reaction
en
dc.subject
intermetallic compounds
en
dc.subject
selective oxygenation of organics
en
dc.subject
water oxidation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5-Hydroxymethylfurfural
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2008823
dcterms.bibliographicCitation.doi
10.1002/adma.202008823
dcterms.bibliographicCitation.journaltitle
Advanced Materials
dcterms.bibliographicCitation.number
27
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adma.202008823
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-4095
refubium.resourceType.provider
WoS-Alert