dc.contributor.author
Tsurkan, Dmitry
dc.contributor.author
Simon, Paul
dc.contributor.author
Schimpf, Christian
dc.contributor.author
Motylenko, Mykhaylo
dc.contributor.author
Rafaja, David
dc.contributor.author
Roth, Friedrich
dc.contributor.author
Inosov, Dmytro S.
dc.contributor.author
Makarova, Anna A.
dc.contributor.author
Stepniak, Izabela
dc.contributor.author
Petrenko, Iaroslav
dc.date.accessioned
2021-08-02T12:37:40Z
dc.date.available
2021-08-02T12:37:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31352
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31086
dc.description.abstract
The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
extreme biomimetics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2101682
dcterms.bibliographicCitation.doi
10.1002/adma.202101682
dcterms.bibliographicCitation.journaltitle
Advanced Materials
dcterms.bibliographicCitation.number
30
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adma.202101682
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-4095
refubium.resourceType.provider
WoS-Alert