dc.contributor.author
Shao, Jingjing
dc.contributor.author
Paulus, Beate
dc.contributor.author
Tremblay, Jean Christophe
dc.date.accessioned
2021-06-24T06:18:41Z
dc.date.available
2021-06-24T06:18:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31131
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30867
dc.description.abstract
In this contribution, we aim at investigating the mechanism of biosensing in graphene-based materials from first principles. Inspired by recent experiments, we construct an atomistic model composed of a pyrene molecule serving as a linker fragment, which is used in experiment to attach certain aptamers, and a defective zigzag graphene nanoribbons (ZGNRs). Density functional theory including dispersive interaction is employed to study the energetics of the linker absorption on the defective ZGNRs. Combining non-equilibrium Green's function and the Landauer formalism, the total current-bias voltage dependence through the device is evaluated. Modifying the distance between the linker molecule and the nanojunction plane reveals a quantitative change in the total current-bias voltage dependence, which correlates to the experimental measurements. In order to illuminate the geometric origin of these variation observed in the considered systems, the local currents through the device are investigated using the method originally introduced by Evers and co-workers. In our new implementation, the numerical efficiency is improved by applying sparse matrix storage and spectral filtering techniques, without compromising the resolution of the local currents. Local current density maps qualitatively demonstrate the local variation of the interference between the linker molecule and the nanojunction plane.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
graphene-based materials
en
dc.subject
atomistic model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Local current analysis on defective zigzag graphene nanoribbons devices for biosensor material applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/jcc.26557
dcterms.bibliographicCitation.journaltitle
Journal of Computational Chemistry
dcterms.bibliographicCitation.number
21
dcterms.bibliographicCitation.pagestart
1475
dcterms.bibliographicCitation.pageend
1485
dcterms.bibliographicCitation.volume
42
dcterms.bibliographicCitation.url
https://doi.org/10.1002/jcc.26557
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1096-987X