dc.contributor.author
Mielke, Alexander
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Zendehroud, Sina
dc.date.accessioned
2022-01-03T09:32:21Z
dc.date.available
2022-01-03T09:32:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31077
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30813
dc.description.abstract
We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water–air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy–dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally damped wave equation with a time derivative of order 3/2.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bulk-interface coupling
en
dc.subject
Surface waves
en
dc.subject
Energy-dissipation balance
en
dc.subject
Fractional derivatives
en
dc.subject
Parabolic Dirichlet-to-Neumann map
en
dc.subject
Convergence of semigroups
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A rigorous derivation and energetics of a wave equation with fractional damping
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00028-021-00686-2
dcterms.bibliographicCitation.journaltitle
Journal of Evolution Equations
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
3079
dcterms.bibliographicCitation.pageend
3102
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00028-021-00686-2
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1424-3202
refubium.resourceType.provider
WoS-Alert