dc.contributor.author
Otero, Noelia
dc.contributor.author
Rust, Henning W.
dc.contributor.author
Butler, Tim
dc.date.accessioned
2021-05-26T11:30:34Z
dc.date.available
2021-05-26T11:30:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30868
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30607
dc.description.abstract
Due to the strong temperature dependence of surface ozone concentrations (O3), future warmer conditions may worsen ozone pollution levels despite continued efforts on emission controls of ozone precursors. Using longterm measurements of hourly O3 concentrations co-located with NOx concentrations in stations distributed throughout Germany, we assess changes in the climate penalty in summertime, defined as the slope of ozonetemperature relationship during the period 1999?2018. We find a stronger temperature sensitivity in the urban stations over the southwestern regions, especially in the first period of the study (1999?2008). We show a decrease in the climate penalty in most of stations during the second period of the study (2009?2018), with some exceptions (e.g. Berlin) where the climate penalty did not show significant changes. A key motivation of this study is to provide further insights into the impacts of NOx reductions in the O3-temperature relationship. For that, we propose a statisti-cal approach based on Generalized Additive Models (GAMs) to describe ozone production rates, inferred from hourly observations, as a function of NOx and temperature, among other variables relevant during the O3 production. The GAMs confirm lower O3 production rates during the second period (2009?2018) at most of the stations and a decreasing sensitivity to temperature. We observe that a large number of stations are transitioning to NOx-limited chemistry, consistent with a decreasing temperature dependence of O3 at moderate-high temperatures as a result of sustained NOx reductions. Moreover, the GAMs results showed changes in the shape of the function representing the O3-temperature relationship when comparing the first and second period, which suggest changes in VOC influencing the temperature dependence of O3. From these results, we infer effective VOC reductions over time that have also contributed to the observed decrease of O3 production rates. Thus, our analysis indicates that emissions reductions have been effective in a number of stations, particularly in the southwestern regions. However, we notice that in a few stations (e.g. Berlin) additional emission reductions should be required to effectively mitigate the temperature dependence of O3.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Surface ozone
en
dc.subject
Climate penalty
en
dc.subject
Temperature dependence
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Temperature dependence of tropospheric ozone under NOx reductions over Germany
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
118334
dcterms.bibliographicCitation.doi
10.1016/j.atmosenv.2021.118334
dcterms.bibliographicCitation.journaltitle
Atmospheric Environment
dcterms.bibliographicCitation.volume
253
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.atmosenv.2021.118334
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1352-2310
refubium.resourceType.provider
WoS-Alert