dc.contributor.author
Ersoy, Kıvanç
dc.date.accessioned
2021-05-17T12:01:22Z
dc.date.available
2021-05-17T12:01:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30786
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30525
dc.description.abstract
In Ersoy et al. [J. Algebra481 (2017), 1–11], we have proved that if G is a locally finite group with an elementary abelian p-subgroup A of order strictly greater than p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α) does not involve an infinite simple group, then G is almost locally soluble. This result is a consequence of another result proved in Ersoy et al. [J. Algebra481 (2017), 1–11], namely: if G is a simple locally finite group with an elementary abelian group A of automorphisms acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov and for every non-identity α ∈ A the set of fixed points CG(α) does not involve an infinite simple groups then G is finite. In this paper, we improve this result about simple locally finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ≅PSLp(k) where char k ≠ p and P has a subgroup Q of order p2 such that CG(P) = Q.
en
dc.format.extent
4 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Simple groups
en
dc.subject
Automorphisms of infinite groups
en
dc.subject
Linear algebraic groups over arbitrary fields
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Centralizers of p-Subgroups in Simple Locally Finite Groups
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1017/S001708951900003X
dcterms.bibliographicCitation.journaltitle
Glasgow Mathematical Journal
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
183
dcterms.bibliographicCitation.pageend
186
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1017/S001708951900003X
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Open Access in Konsortiallizenz - Cambridge
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0017-0895
dcterms.isPartOf.eissn
1469-509X