dc.contributor.author
Rathenberg, Jan
dc.date.accessioned
2018-06-07T16:49:06Z
dc.date.available
2002-09-19T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/3077
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-7277
dc.description
0TITLE and APPENDIX
1INTRODUCTION
1.1 Organization of the cholinergic gene locus, mRNA transcription and
translation
1.2 ChAT protein purification and characterization
1.3 The cholinergic synapse
1.4 The central and peripheral cholinergic nervous system
1.4.1 Anatomy
1.4.2 Development
1.4.3 Physiology
1.4.4 Disease
1.5 Organotypic cultures of neural tissue
1.6 Transfection of neurons by electroporation
1.7 In vivo imaging of the mammalian nervous system using fluorescent proteins
1.8 Cre/loxP mediated gene deletion or conditional gene "knock-out"
1.9 Creation of mutant mouse lines by homologous recombination
1.10 Aims of the project
2MATERIALS AND METHODS
2.1 Materials
2.1.1 Chemicals, reagents and consumable materials
2.1.2 Plasmid vectors
2.1.3 Bacteria strains, cell lines and animals
2.1.4 Primers and Oligonucleotides
2.1.5 Buffers and solutions
2.1.6 Media and solutions for bacteria, cell and tissue culture
2.2 Methods
2.2.1 Molecular Biology
2.2.1.1 Preparation of plasmid DNA
2.2.1.2 Determination of nucleic acid concentration
2.2.1.3 Sequence analysis
2.2.1.4 Digestion with restriction enzymes
2.2.1.5 Agarose gel electrophoresis
2.2.1.6 DNA fragment isolation
2.2.1.7 5´-Dephosphorylation
2.2.1.8 Ligation
2.2.1.9 Transformation
2.2.1.10 Preparation of competent cells
2.2.1.11 RNA preparation from mouse (C57Bl/6) spinal cord
2.2.1.12 Reverse transcription
2.2.1.13 Site-directed mutagenesis
2.2.1.14 PCR amplification of DNA fragments
2.2.1.15 PCR screen of ES cell clones in the 96 well format
2.2.1.16 Preparation of genomic ES cell DNA from 96 well culture plates
2.2.1.17 Southern transfer of DNA fragments onto membranes
2.2.1.18 Detection of PCR products of using the ECL system
2.2.1.19 Detection of genomic digestion fragments with radiolabeled
2.2.2 Biochemistry
2.2.2.1 Choline acetyltransferase activity assay
2.2.2.2 Determination of protein concentration
2.2.2.3 Protein gel electrophoresis
2.2.2.4 Staining of proteins in polyacrylamide gels
2.2.2.5 Western blotting and immunodetection
2.2.2.6 Fixation of cells and tissues
2.2.2.7 ChAT immuncytochemistry of transfected COS-1 cells
2.2.3 Cell culture
2.2.3.1 Transfection of COS-1 cells
2.2.3.2 ES cell culture
2.2.3.2.1 Preparation of feeder cells
2.2.3.2.2 Electroporation of ES cells
2.2.3.2.3 Picking of G418 resistant clones
2.2.3.3 Organotypic tissue culture
2.2.4 Electroporation of single neurons in brain slice cultures (SCE)
3RESULTS
3.1 Generation of expression and targeting vectors
3.1.1 ChAT-GFP and wildtype ChAT expression vectors
3.1.2 ChAT-GFP targeting vector
3.1.3 ChAT-loxP targeting vector
3.2 Functional characterization of the ChAT-GFP fusion protein
3.2.1 Expression of ChAT-GFP and wildtype ChAT
3.2.2 Enzyme activity of ChAT-GFP compared to the wildtype
3.2.3 Subcellular distribution of ChAT-GFP and wildtype ChAT in COS-1 cells
3.2.4 Subcellular distribution of ChAT-GFP in hippocampal neurons
3.3 Transfection of individual neurons in organotypic hippocampal slice
cultures by single-cell electroporation (SCE)
3.4 Expression of presynaptic and postsynaptic marker proteins
3.5 Generation of ChAT-GFP and ChAT-loxP targeted mouse E14 stem cell
4DISCUSSION
4.1 A recombinant ChAT-GFP fusion protein has been generated which is
efficiently expressed in COS-1 cells
4.2 Influence of GFP insertion in ChAT enzyme activity
4.3 Distribution of wildtype ChAT and ChAT-GFP in COS-1 cells
4.4 ChAT-GFP is expressed in pyramidal neurons and appears to be associated to
synaptic vesicles
4.5 Establishing organotypic brain slice cultures
4.6 Improved single-cell electroporation (SCE) is a powerful transfection
method for single neurons
4.7 Gene transfer of fluorescent proteins via SCE
4.8 Modification of the ChAT gene in ES cells by homologous recombination
4.9 Outlook
5SUMMARY
6ZUSAMMENFASSUNG
7ABBREVIATIONS
8REFERENCES
dc.description.abstract
Cholinergic neurons use the neurotransmitter acetylcholine (ACh) and are
involved in basic brain functions like learning and memory formation,
awareness, the sleep and awaking cycle as well as motor behavior. Cholinergic
neuron loss occurs during severe neurodegenerative diseases like Alzheimer or
amyotrophic lateral sklerosis. So far immunohistochemistry or in situ
hybridization against the cholinergic marker enzyme choline acetyltransferase
(ChAT) serve to identify cholinergic neurons. However, these methods require
fixation of the tissue and thus preclude in vivo experiments. One aim of the
present work was to produce a fusion protein between ChAT and the green
fluorescent protein (GFP) which will enable to visualize the cholinergic
marker without fixation. Therefore the cDNA of ChAT was isolated from mouse
spinal cord and subsequently the cDNA of GFP was cloned into a unique HindIII
restriction site corresponding to the N-terminal part of the ChAT protein. The
ChAT-GFP protein was expressed in COS-1 cells and primary cultures of
hippocampal neurons as well as in hippocampal neurons of organotypic brain
slice cultures. It was shown that the enzyme activity of the recombinant ChAT-
GFP fusion protein is slightly reduced compared to the wildtype enzyme.
However, it is still functional and similar distributed as the wildtype
protein in cultured cells. In hippocampal neurons ChAT-GFP translocates into
axonal processes and it is present in the presynaptic compartments. Since it
was shown that ChAT-GFP is functional like the wildtype enzyme the cDNA of GFP
was targeted to the ChAT gene of mouse embryonic stem cells by homologous
recombination. These ChAT(GFP/+) ES cells were injected into blastozysts to
produce chimeric mice. This blastozyst transfer provided 14 chimeric animals.
Hetero- and homozygous mice which emerge from ChAT(GFP/+) ES cells will
express the ChAT-GFP fusion protein in all cholinergic cells and hence these
cholinergic neurons should show endogenous fluorescence. In parallel another
ES cell clone was produced in which the first coding exon of ChAT is flanked
by loxP sites (genotype ChAT(loxP/+)). This "knock-out" model will allow the
conditional deletion of the ChAT gene specifically in the cholinergic nervous
system during later developmental stages. A further aim was to establish
organotypic brain slice cultures in order to study the physiology, development
and degeneration of cholinergic neurons. With cultures prepared from ChAT-GFP
targeted mice it will be possible to transfect cholinergic neurons. To this
end a new method for electroporation of individual neurons, namely single-cell
electroporation (SCE), was established and the efficiency of SCE was
significantly improved. Using SCE, neuronal markers were expressed as GFP-
fusion proteins in pyramidal neurons of organotypic hippocampal brain slice
cultures and their distribution was compared with that of ChAT-GFP. It was
shown that ChAT-GFP is present in the cytosol of the soma, dendritic spines
and the axon but is absent from the nucleus and is at least in part associated
with synaptic vesicles. The combination of gene targeting by homologous
recombination and the direct gene transfer by SCE opens new avenues to analyze
signal transduction in the cholinergic system at a molecular level.
de
dc.description.abstract
Cholinerge Neuronen benutzen den Neurotransmitter Acetylcholin (ACh) und sind
an fundamentalen Gehirnfunktionen wie dem Lernen und Erinnern, Bewusstsein,
dem Schlaf-Wach-Rhythmus wie auch der Muskelkontrolle beteiligt. Bei schweren
neurodegenerativen Krankheiten wie Alzheimer oder Amyotropher Lateral Sklerose
gehen cholinerge Nervenzellen verloren. Zur Identifikation cholinerger
Neuronen setzt man immunhistochemische Methoden oder in situ Hybridisierung
gegen das cholinerge Markerenzym Cholin Acetyltransferase (ChAT) ein. Diese
Methoden erfordern allerdings die Fixierung des Gewebes, wodurch es nicht
möglich ist, in vivo Experimente durchzuführen. Ein Ziel dieser Arbeit war,
durch die Herstellung eines ChAT Fusionsproteins mit dem grün fluoreszierende
Protein (GFP) zu ermöglichen, cholinerge Neuronen ohne Fixierung sichtbar zu
machen. Hierfür wurde die cDNA von ChAT aus dem Rückenmark der Maus isoliert
und nachfolgend die cDNA von GFP in eine einzelne HindIII
Restriktionsschnittstelle kloniert, einem Sequenzbereich, der dem N-terminalen
Ende des ChAT Proteins entspricht. Dieses ChAT-GFP Fusionsprotein wurde in
COS-1 Zellen und Primärkultur hippokampaler Neuronen sowie in hippokampalen
Neuronen organotypischer Gehirnschnittkulturen exprimiert. Es wurde gezeigt,
dass das rekombinante ChAT-GFP Fusionsprotein eine geringfügig niedrigere
spezifische Aktivität gegenüber dem Wildtypenzym besitzt. Es ist jedoch
funktional und in Kulturzellen genauso wie das Wildtypprotein verteilt. In
hippokampalen Neuronen diffundiert ChAT-GFP in axonale Verzweigungen und
gelangt so an seinen Wirkungsort, die Präsynapse. Nachdem gezeigt wurde, dass
ChAT-GFP in seiner Funktion vergleichbar dem Wildtypenzym ist, wurde die cDNA
von GFP durch homologe Rekombination gezielt in das ChAT Gen embryonaler
Stammzellen der Maus integriert. Diese ChAT(GFP/+) ES-Zellen wurden in
Blastozysten injiziert. Aus diesem Blastozystentransfer gingen 14 chimäre
Tiere hervor. Hetero- und homozygote Tiere, die aus ChAT(GFP/+) Stammzellen
hervorgehen, werden das zuvor beschriebene ChAT-GFP Fusionsprotein in allen
cholinergen Zellen exprimieren welche folglich eine endogene Fluoreszenz
zeigen sollten. Parallel dazu wurde ein weiterer ES Zellklon hergestellt, bei
dem das erste kodierende Exon von ChAT ?gefloxt" ist (Genotyp ChAT(loxP/+)).
Durch konditionalen ?Knockout" kann dann das ChAT Gen entwicklungs- und
gewebespezifisch in Mäusen ausgeschaltet werden. Ein weiteres Ziel war, die
Kultivierung von organotypischen Gehirngewebeschnitten zu etablieren um später
die Physiologie, Entwicklung und Degeneration cholinerger Neuronen untersuchen
zu können. Dies soll u.a. durch gezielte Transfektion von cholinergen Neuronen
in Gewebekultur erreicht werden. Aus diesem Grund wurde eine neue Methode,
?single-cell electroporation" oder SCE, zur Elektroporation von einzelnen
Neuronen etabliert. Die Effizienz dieser Methode wurde um ein Vielfaches
gesteigert. Mit SCE wurden neuronale Markerproteine in Pyramidenneuronen
organotypischer, hippokampaler Gehirnschnitte exprimiert und mit der
Verteilung von ChAT-GFP verglichen. Es wurde gezeigt, dass ChAT-GFP im Zytosol
des Zellsomas, der dendritischen Spines und des Axons vorkommt und zumindest
teilweise mit synaptischen Vesikeln assoziiert ist. Die Kombination aus
genetischer Modifikation durch homologe Rekombination und direktem Gentransfer
durch SCE ermöglicht neue Wege, die Signaltransduktion des cholinergen Systems
auf molekularer Ebene zu analysieren.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
gene targeting
dc.subject
single-cell electroporation
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Gene targeting and single-cell electroporation to analyze cholinergic neurons
using choline acetyltransferase as marker
dc.contributor.firstReferee
Priv.-Doz. Dr. Veit Witzemann
dc.contributor.furtherReferee
Prof. Dr. Ferdinand Hucho
dc.date.accepted
2002-09-13
dc.date.embargoEnd
2002-09-23
dc.identifier.urn
urn:nbn:de:kobv:188-2002001945
dc.title.translated
Gezielte Genmodifikation und Single-Cell Elektroporation zur Analyse
cholinerger Neuronen mittels Cholin Acetyltransferase als Marker
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000000733
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2002/194/
refubium.mycore.derivateId
FUDISS_derivate_000000000733
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access