dc.contributor.author
Engel, Maximilian
dc.contributor.author
Kuehn, Christian
dc.date.accessioned
2021-08-31T09:37:50Z
dc.date.available
2021-08-31T09:37:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30769
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30508
dc.description.abstract
For an attracting periodic orbit (limit cycle) of a deterministic dynamical system, one defines the isochron for each point of the orbit as the cross-section with fixed return time under the flow. Equivalently, isochrons can be characterized as stable manifolds foliating neighborhoods of the limit cycle or as level sets of an isochron map. In recent years, there has been a lively discussion in the mathematical physics community on how to define isochrons for stochastic oscillations, i.e. limit cycles or heteroclinic cycles exposed to stochastic noise. The main discussion has concerned an approach finding stochastic isochrons as sections of equal expected return times versus the idea of considering eigenfunctions of the backward Kolmogorov operator. We discuss the problem in the framework of random dynamical systems and introduce a new rigorous definition of stochastic isochrons as random stable manifolds for random periodic solutions with noise-dependent period. This allows us to establish a random version of isochron maps whose level sets coincide with the random stable manifolds. Finally, we discuss links between the random dynamical systems interpretation and the equal expected return time approach via averaged quantities.
en
dc.format.extent
39 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
random dynamical systems
en
dc.subject
stochastic isochrons
en
dc.subject
random periodic solutions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A Random Dynamical Systems Perspective on Isochronicity for Stochastic Oscillations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00220-021-04077-z
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
1603
dcterms.bibliographicCitation.pageend
1641
dcterms.bibliographicCitation.volume
386
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00220-021-04077-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0010-3616
dcterms.isPartOf.eissn
1432-0916