dc.contributor.author
Abrahamsen, Mikkel
dc.contributor.author
Giannopoulos, Panos
dc.contributor.author
Löffler, Maarten
dc.contributor.author
Rote, Günter
dc.date.accessioned
2021-05-10T09:29:41Z
dc.date.available
2021-05-10T09:29:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30703
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30442
dc.description.abstract
We study the following separation problem: Given a collection of pairwise disjoint coloured objects in the plane with k different colours, compute a shortest “fence” F, i.e., a union of curves of minimum total length, that separates every pair of objects of different colours. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as geometric k-cut, as it is a geometric analog to the well-studied multicut problem on graphs. We first give an O(n4log3n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colours with n corners in total. We then show that the problem is NP-hard for the case of three colours. Finally, we give a randomised 4/3⋅1.2965-approximation algorithm for polygons and any number of colours.
en
dc.format.extent
33 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
separation problem
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Geometric Multicut: Shortest Fences for Separating Groups of Objects in the Plane
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-020-00232-w
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
575
dcterms.bibliographicCitation.pageend
607
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-020-00232-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0179-5376
dcterms.isPartOf.eissn
1432-0444