dc.contributor.author
Chiu, Man-Kwun
dc.contributor.author
Felsner, Stefan
dc.contributor.author
Scheucher, Manfred
dc.contributor.author
Schnider, Patrick
dc.contributor.author
Steiner, Raphael
dc.contributor.author
Valtr, Pavel
dc.date.accessioned
2021-05-10T07:32:07Z
dc.date.available
2021-05-10T07:32:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30697
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30436
dc.description.abstract
Let L be an arrangement of n lines in the Euclidean plane. The k-level of L consists of all vertices v of the arrangement which have exactly k lines of L passing below v. The complexity (the maximum size) of the k-level in a line arrangement has been widely studied. In 1998 Dey proved an upper bound of O(n.(k+1)(1/3)). Due to the correspondence between lines in the plane and great-circles on the sphere, the asymptotic bounds carry over to arrangements of great-circles on the sphere, where the k-level denotes the vertices at distance k to a marked cell, the south pole.
We prove an upper bound of O((k + 1)(2)) on the expected complexity of the (<= k)-level in great-circle arrangements if the south pole is chosen uniformly at random among all cells.
We also consider arrangements of great (d - 1)-spheres on the d-sphere S-d which are orthogonal to a set of random points on S-d. In this model, we prove that the expected complexity of the k-level is of order Theta((k + 1)(d-1)).
In both scenarios, our bounds are independent of n, showing that the distribution of arrangements under our sampling methods differs significantly from other methods studied in the literature, where the bounds do depend on n.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Euclidean plane
en
dc.subject
lines in the plane
en
dc.subject
great-circles on the sphere
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
On the average complexity of the k-level
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.20382/jocg.v11i1a19
dcterms.bibliographicCitation.journaltitle
Journal of Computational Geometry
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
493
dcterms.bibliographicCitation.pageend
506
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.20382/jocg.v11i1a19
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik / Theoretische Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1920-180X
refubium.resourceType.provider
WoS-Alert