dc.contributor.author
Afuni, Ahmad
dc.date.accessioned
2021-08-31T09:22:22Z
dc.date.available
2021-08-31T09:22:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30624
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30363
dc.description.abstract
We establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Local regularity
en
dc.subject
Geometric heat flows
en
dc.subject
Harmonic map heat flow
en
dc.subject
Yang-Mills heat flow
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Local Regularity for the Harmonic Map and Yang-Mills Heat Flows
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s12220-021-00624-1
dcterms.bibliographicCitation.journaltitle
The Journal of Geometric Analysis
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
9677
dcterms.bibliographicCitation.pageend
9707
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s12220-021-00624-1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1050-6926
dcterms.isPartOf.eissn
1559-002X
refubium.resourceType.provider
WoS-Alert