dc.contributor.author
Vartak, Nachiket
dc.contributor.author
Guenther, Georgia
dc.contributor.author
Joly, Florian
dc.contributor.author
Damle-Vartak, Amruta
dc.contributor.author
Wibbelt, Gudrun
dc.contributor.author
Fickel, Jörns
dc.contributor.author
Jörs, Simone
dc.contributor.author
Begher-Tibbe, Brigitte
dc.contributor.author
Friebel, Adrian
dc.contributor.author
Hofer, Heribert
dc.date.accessioned
2021-04-26T07:19:47Z
dc.date.available
2021-04-26T07:19:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30526
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30266
dc.description.abstract
Background and Aims
Small‐molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy.
Approach and Results
The results challenge the prevailing “mechano‐osmotic” theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis‐(5‐carboxymethoxy‐2‐nitrobenzyl)‐ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts.
Conclusions
The liver consists of a diffusion‐dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow‐augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
mouse livers
en
dc.subject
small-molecule flux
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Intravital Dynamic and Correlative Imaging of Mouse Livers Reveals Diffusion-Dominated Canalicular and Flow-Augmented Ductular Bile Flux
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/hep.31422
dcterms.bibliographicCitation.journaltitle
Hepatology
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1531
dcterms.bibliographicCitation.pageend
1550
dcterms.bibliographicCitation.volume
73
dcterms.bibliographicCitation.url
https://doi.org/10.1002/hep.31422
refubium.affiliation
Veterinärmedizin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1527-3350
refubium.resourceType.provider
WoS-Alert