dc.contributor.author
Anastos, Michael
dc.contributor.author
Frieze, Alan
dc.date.accessioned
2021-04-22T07:34:05Z
dc.date.available
2021-04-22T07:34:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30463
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30203
dc.description.abstract
We discuss the length L-c,L-n of the longest cycle in a sparse random graph G(n,p), p = c/n, c constant. We show that for large c there exists a function f (c) such that L-c,L-n/n -> f (c) a.s. The function f (c) = 1 - Sigma(infinity)(k=1) p(k)(c)e(-kc) where pk(c) is a polynomial in c. We are only able to explicitly give the values p(1), p(2), although we could in principle compute any p(k). We see immediately that the length of the longest path is also asymptotic to f (c)n w.h.p.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Longest cycle
en
dc.subject
Sparse random graph
en
dc.subject
Scaling limit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A scaling limit for the length of the longest cycle in a sparse random graph
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.jctb.2021.01.001
dcterms.bibliographicCitation.journaltitle
Journal of Combinatorial Theory, Series B
dcterms.bibliographicCitation.pagestart
184
dcterms.bibliographicCitation.pageend
208
dcterms.bibliographicCitation.volume
148
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jctb.2021.01.001
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0095-8956
refubium.resourceType.provider
WoS-Alert