dc.contributor.author
Hempel, Tim
dc.contributor.author
Raich, Lluís
dc.contributor.author
Olsson, Simon
dc.contributor.author
Azouz, Nurit P.
dc.contributor.author
Klingler, Andrea M.
dc.contributor.author
Hoffmann, Markus
dc.contributor.author
Pohlmann, Stefan
dc.contributor.author
Rothenberg, Marc E.
dc.contributor.author
Noé, Frank
dc.date.accessioned
2021-04-16T06:42:49Z
dc.date.available
2021-04-16T06:42:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30371
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30112
dc.description.abstract
The entry of the coronavirus SARS-CoV-2 into human lung cells can be inhibited by the approved drugs camostat and nafamostat. Here we elucidate the molecular mechanism of these drugs by combining experiments and simulations. In vitro assays confirm that both drugs inhibit the human protein TMPRSS2, a SARS-Cov-2 spike protein activator. As no experimental structure is available, we provide a model of the TMPRSS2 equilibrium structure and its fluctuations by relaxing an initial homology structure with extensive 330 microseconds of all-atom molecular dynamics (MD) and Markov modeling. Through Markov modeling, we describe the binding process of both drugs and a metabolic product of camostat (GBPA) to TMPRSS2, reaching a Michaelis complex (MC) state, which precedes the formation of a long-lived covalent inhibitory state. We find that nafamostat has a higher MC population than camostat and GBPA, suggesting that nafamostat is more readily available to form the stable covalent enzyme-substrate intermediate, effectively explaining its high potency. This model is backed by our in vitro experiments and consistent with previous virus cell entry assays. Our TMPRSS2-drug structures are made public to guide the design of more potent and specific inhibitors.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D0SC05064D
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
983
dcterms.bibliographicCitation.pageend
992
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D0SC05064D
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert