dc.contributor.author
Woith, Eric
dc.contributor.author
Guerriero, Gea
dc.contributor.author
Hausman, Jean-Francois
dc.contributor.author
Renaut, Jenny
dc.contributor.author
Leclercq, Céline
dc.contributor.author
Weise, Christoph
dc.contributor.author
Legay, Sylvain
dc.contributor.author
Weng, Alexander
dc.contributor.author
Melzig, Matthias F.
dc.date.accessioned
2021-04-29T11:25:10Z
dc.date.available
2021-04-29T11:25:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30297
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30038
dc.description.abstract
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
extracellular vesicles
en
dc.subject
plant nanovesicles
en
dc.subject
exosome-like nanoparticles
en
dc.subject
in vitro plant cell culture
en
dc.subject
metabolomics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::575 Einzelne Teile von und physiologische Systeme bei Pflanzen
dc.title
Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3719
dcterms.bibliographicCitation.doi
10.3390/ijms22073719
dcterms.bibliographicCitation.journaltitle
International Journal of Molecular Sciences
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
22
dcterms.bibliographicCitation.url
https://doi.org/10.3390/ijms22073719
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1422-0067