dc.contributor.author
Ulitzsch, Esther
dc.contributor.author
He, Qiwei
dc.contributor.author
Ulitzsch, Vincent
dc.contributor.author
Molter, Hendrik
dc.contributor.author
Nichterlein, André
dc.contributor.author
Niedermeier, Rolf
dc.contributor.author
Pohl, Steffi
dc.date.accessioned
2021-04-09T14:07:44Z
dc.date.available
2021-04-09T14:07:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30294
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30035
dc.description.abstract
Complex interactive test items are becoming more widely used in assessments. Being computer-administered, assessments using interactive items allow logging time-stamped action sequences. These sequences pose a rich source of information that may facilitate investigating how examinees approach an item and arrive at their given response. There is a rich body of research leveraging action sequence data for investigating examinees' behavior. However, the associated timing data have been considered mainly on the item-level, if at all. Considering timing data on the action-level in addition to action sequences, however, has vast potential to support a more fine-grained assessment of examinees' behavior. We provide an approach that jointly considers action sequences and action-level times for identifying common response processes. In doing so, we integrate tools from clickstream analyses and graph-modeled data clustering with psychometrics. In our approach, we (a) provide similarity measures that are based on both actions and the associated action-level timing data and (b) subsequently employ cluster edge deletion for identifying homogeneous, interpretable, well-separated groups of action patterns, each describing a common response process. Guidelines on how to apply the approach are provided. The approach and its utility are illustrated on a complex problem-solving item from PIAAC 2012.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
action sequences
en
dc.subject
response times
en
dc.subject
complex problem solving
en
dc.subject
cluster editing
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
Combining Clickstream Analyses and Graph-Modeled Data Clustering for Identifying Common Response Processes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s11336-020-09743-0
dcterms.bibliographicCitation.journaltitle
Psychometrika
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
190
dcterms.bibliographicCitation.pageend
214
dcterms.bibliographicCitation.volume
86
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11336-020-09743-0
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Methoden und Evaluation/Qualitätssicherung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0033-3123
dcterms.isPartOf.eissn
1860-0980
refubium.resourceType.provider
WoS-Alert