dc.contributor.author
Berendsohn, Benjamin Aram
dc.contributor.author
Kozma, Laszlo
dc.contributor.author
Marx, Daniel
dc.date.accessioned
2021-08-02T11:10:45Z
dc.date.available
2021-08-02T11:10:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30250
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29991
dc.description.abstract
Permutation patterns and pattern avoidance have been intensively studied in combinatorics and computer science, going back at least to the seminal work of Knuth on stack-sorting (1968). Perhaps the most natural algorithmic question in this area is deciding whether a given permutation of length n contains a given pattern of length k. In this work we give two new algorithms for this well-studied problem, one whose running time is n (k/4+o(k)), and a polynomial-space algorithm whose running time is the better of O(1.618(n)) and O(n(k/2+1)). These results improve the earlier best bounds of n(0)(.)(47k)(+o(k)) and O(1.79(n)) due to Ahal and Rabinovich (2000) resp. Bruner and Lackner (2012) and are the fastest algorithms for the problem when k is an element of Omega(log n). We show that both our new algorithms and the previous exponential-time algorithms in the literature can be viewed through the unifying lens of constraint-satisfaction. Our algorithms can also count, within the same running time, the number of occurrences of a pattern. We show that this result is close to optimal: solving the counting problem in time f(k).n(o(k/logk)) would contradict the exponential-time hypothesis (ETH). For some special classes of patterns we obtain improved running times. We further prove that 3-increasing (4321-avoiding) and 3-decreasing (1234-avoiding) permutations can, in some sense, embed arbitrary permutations of almost linear length, which indicates that a sub-exponential running time is unlikely with the current techniques, even for patterns from these restricted classes.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Permutation patterns
en
dc.subject
pattern avoidance
en
dc.subject
combinatorics science
en
dc.subject
computer science
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.title
Finding and Counting Permutations via CSPs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00453-021-00812-z
dcterms.bibliographicCitation.journaltitle
Algorithmica
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
2552
dcterms.bibliographicCitation.pageend
2577
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00453-021-00812-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0178-4617
dcterms.isPartOf.eissn
1432-0541
refubium.resourceType.provider
WoS-Alert