dc.contributor.author
Berendsohn, Benjamin Aram
dc.contributor.author
Kozma, Laszlo
dc.contributor.author
Marx, Daniel
dc.date.accessioned
2021-08-02T11:10:45Z
dc.date.available
2021-08-02T11:10:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30250
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29991
dc.description.abstract
Permutation patterns and pattern avoidance have been intensively studied in combinatorics and computer science, going back at least to the seminal work of Knuth on stack-sorting (1968). Perhaps the most natural algorithmic question in this area is deciding whether a given permutation of length n contains a given pattern of length k. In this work we give two new algorithms for this well-studied problem, one whose running time is n (k/4+o(k)), and a polynomial-space algorithm whose running time is the better of O(1.618(n)) and O(n(k/2+1)). These results improve the earlier best bounds of n(0)(.)(47k)(+o(k)) and O(1.79(n)) due to Ahal and Rabinovich (2000) resp. Bruner and Lackner (2012) and are the fastest algorithms for the problem when k is an element of Omega(log n). We show that both our new algorithms and the previous exponential-time algorithms in the literature can be viewed through the unifying lens of constraint-satisfaction. Our algorithms can also count, within the same running time, the number of occurrences of a pattern. We show that this result is close to optimal: solving the counting problem in time f(k).n(o(k/logk)) would contradict the exponential-time hypothesis (ETH). For some special classes of patterns we obtain improved running times. We further prove that 3-increasing (4321-avoiding) and 3-decreasing (1234-avoiding) permutations can, in some sense, embed arbitrary permutations of almost linear length, which indicates that a sub-exponential running time is unlikely with the current techniques, even for patterns from these restricted classes.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Permutation patterns
en
dc.subject
pattern avoidance
en
dc.subject
combinatorics science
en
dc.subject
computer science
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.title
Finding and Counting Permutations via CSPs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00453-021-00812-z
dcterms.bibliographicCitation.journaltitle
Algorithmica
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
2552
dcterms.bibliographicCitation.pageend
2577
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00453-021-00812-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0178-4617
dcterms.isPartOf.eissn
1432-0541
refubium.resourceType.provider
WoS-Alert