dc.contributor.author
Netz, Roland R.
dc.date.accessioned
2021-04-26T11:28:33Z
dc.date.available
2021-04-26T11:28:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30179
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29920
dc.description.abstract
For estimating the infection risk from virus-containing airborne droplets, it is crucial to consider the interplay of all relevant physical-chemical effects that affect droplet evaporation and sedimentation times. For droplet radii in the range 70 nm < R < 60 μm, evaporation can be described in the stagnant-flow approximation and is diffusion-limited. Analytical equations are presented for the droplet evaporation rate, the time-dependent droplet size, and the sedimentation time, including evaporation cooling and solute osmotic-pressure effects. Evaporation makes the time for initially large droplets to sediment much longer and thus significantly increases the viral air load. Using recent estimates for SARS-CoV-2 concentrations in sputum and droplet production rates while speaking, a single infected person that constantly speaks without a mouth cover produces a total steady-state air load of more than 104 virions at a given time. In a midsize closed room, this leads to a viral inhalation frequency of at least 2.5 per minute. Low relative humidity, as encountered in airliners and inside buildings in the winter, accelerates evaporation and thus keeps initially larger droplets suspended in air. Typical air-exchange rates decrease the viral air load from droplets with an initial radius larger than 20 μm only moderately.
en
dc.format.extent
17 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Atmospheric chemistry
en
dc.subject
Solution chemistry
en
dc.subject
Sedimentation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80448
dcterms.bibliographicCitation.doi
10.1021/acs.jpcb.0c05229
dcterms.bibliographicCitation.journaltitle
The Journal of Physical Chemistry B
dcterms.bibliographicCitation.number
33
dcterms.bibliographicCitation.originalpublishername
American Chemical Society
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
7093
dcterms.bibliographicCitation.pageend
7101
dcterms.bibliographicCitation.volume
124
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05229
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=jacsat#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-6106