dc.contributor.author
Lauster, Daniel
dc.contributor.author
Klenk, Simon
dc.contributor.author
Ludwig, Kai
dc.contributor.author
Nojoumi, Saba
dc.contributor.author
Behren, Sandra
dc.contributor.author
Adam, Lutz
dc.contributor.author
Stadtmüller, Marlena
dc.contributor.author
Saenger, Sandra
dc.contributor.author
Zimmler, Stephanie
dc.contributor.author
Hönzke, Katja
dc.contributor.author
Yao, Ling
dc.contributor.author
Hoffmann, Ute
dc.contributor.author
Bardua, Markus
dc.contributor.author
Hamann, Alf
dc.contributor.author
Witzenrath, Martin
dc.contributor.author
Sander, Leif E.
dc.contributor.author
Wolff, Thorsten
dc.contributor.author
Hocke, Andreas C.
dc.contributor.author
Hippenstiel, Stefan
dc.contributor.author
De Carlo, Sacha
dc.contributor.author
Neudecker, Jens
dc.contributor.author
Osterrieder, Klaus
dc.contributor.author
Budisa, Nediljko
dc.contributor.author
Netz, Roland
dc.contributor.author
Böttcher, Christoph
dc.contributor.author
Liese, Susanne
dc.contributor.author
Herrmann, Andreas
dc.contributor.author
Hackenberger, Christian P. R.
dc.date.accessioned
2021-04-20T11:41:05Z
dc.date.available
2021-04-20T11:41:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30176
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29917
dc.description.abstract
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle.
en
dc.format.extent
12 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Nanoparticles
en
dc.subject
biological interfaces
en
dc.subject
Influenza virus entry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
76561
dcterms.bibliographicCitation.doi
10.1038/s41565-020-0660-2
dcterms.bibliographicCitation.journaltitle
Nature nanotechnology
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
Nature Publishing Group
dcterms.bibliographicCitation.originalpublisherplace
London
dcterms.bibliographicCitation.pagestart
373
dcterms.bibliographicCitation.pageend
379
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
http://www.nature.com/articles/s41565-020-0660-2
dcterms.rightsHolder.url
https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-publish#Self_archiving_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1748-3395